CHEM1902/1904 Problem Sheet 11 (Week 13)

Work through the ChemCAL modules "Reaction Rates and Chemical Kinetics 1" and "Reaction Rates and Chemical Kinetics 2"

- 1. What are the systematic names of (a) $K_2[PtF_6]$ and (b) $[CoCl_2(NH_3)_4]Cl\cdot 2H_2O$?
- 2. What is the formula for
- (a) tetraamminezinc(II) sulfate-2-water
- (b) tetraaquaoxalatochromium(III) ion?
- 3. Without consulting data tables, write the ground state electronic configuration of the following atoms and ions. For example, Ti is $[Ar]4s^23d^2$.
 - (a) Mn
- (b) Cr

- (c) Ni^{2+} (d) Fe (e) Fe^{3+}
- (f) Cu^{2+}
- (g) Zn^{2+}
- 4. How many isomers are possible for the square planar complex ion [Pt(NH₃)₂Cl₂]?
- 5. Which one of the following compounds is a coordination isomer of [Cr(H₂O)₅Cl]SO₄?
 - [Cr(H₂O)₆]Cl₃(a)
 - (b) [Cr(H₂O)₆]SO₄
 - $[Cr(H_2O)_5SO_4]Cl$ (c)
 - $[Cr(H_2O)_5Cl]Cl_2$ (d)
- 6. Alfred Werner, one of the founders of the field of coordination chemistry, prepared a series of platinum complexes that contained ammonia and chloride ions. One of these had the empirical formula PtCl₄.4NH₃ and when reacted with silver nitrate released two chloride ions per formula unit.
 - Write the structural formula of this compound and write the name of this (a) compound.
 - Draw the possible structures of the metal complex. (b)
 - (c) What types of isomers can be formed by a compound with this empirical formula?
 - What is the d electron configuration of the Pt in this complex? (d)
- 7. Experiments on the reaction below gave the following initial rate data.

$$4Fe^{2+} + O_2 + 4H^+ \rightarrow 4Fe^{3+} + 2H_2O$$

Experiment	$[\mathrm{Fe}^{2+}]$ / mol L^{-1}	$[O_2]$ / mol L^{-1}	$[H^+]$ / mol L^{-1}	Rate = $-d[O_2]/dt$ / mol L ⁻¹ s ⁻¹
1	1×10^{-3}	1×10^{-3}	0.1	5×10^{-4}
2	2×10^{-3}	2×10^{-3}	0.1	8×10^{-3}
3	2×10^{-3}	1×10^{-3}	0.2	8×10^{-3}
4	2×10^{-3}	2×10^{-3}	0.2	1.6×10^{-2}

What is the rate equation for the reaction? (a)

- (b) What is the value of the rate constant, k, for this reaction?
- (c)
- What is the initial rate of formation of Fe^{3+} in experiment 3? Calculate the rate of lose of Fe^{2+} ions when $[Fe^{2+}] = [O_2] = 4 \times 10^{-3}$ mol L⁻¹ (d) and $[H^+] = 0.1 \text{ mol } L^{-1}$.
- The half-life for the first order decomposition of $N_2O_5(g)$ is 6.00×10^4 s at 20 °C. 8.
 - Calculate the rate constant, k, at this temperature. (a)
 - What percentage of the N₂O₅ molecules will have reacted after one hour? (b)
- Dinitrogen tetroxide decomposes according to the equation below. 9. At 30 °C, the value of k is 5.1×10^6 s⁻¹. At 50 °C, the value of k is 1.9×10^7 s⁻¹. What are the activation energy, E_a , and pre-exponential factor, A, for this reaction?

$$N_2O_4(g) \rightarrow 2NO_2(g)$$
 Rate = $-d[N_2O_4(g)]/dt = k[N_2O_4(g)]$